Bergamini C, Moruzzi N, Sblendido A, Lenaz G, Fato R.
PloS One. 2012;7(3):e33712. doi:10.1371/journal.pone.0033712.
Background: Mitochondria are both the cellular powerhouse and the major source of reactive oxygen species. Coenzyme Q(10) plays a key role in mitochondrial energy production and is recognized as a powerful antioxidant. For these reasons it can be argued that higher mitochondrial ubiquinone levels may enhance the energy state and protect from oxidative stress. Despite the large number of clinical studies on the effect of CoQ(10) supplementation, there are very few experimental data about the mitochondrial ubiquinone content and the cellular bioenergetic state after supplementation. Controversial clinical and in vitro results are mainly due to the high hydrophobicity of this compound, which reduces its bioavailability.
Principal Findings: We measured the cellular and mitochondrial ubiquinone content in two cell lines (T67 and H9c2) after supplementation with a hydrophilic CoQ(10) formulation (Qter®) and native CoQ(10). Our results show that the water soluble formulation is more efficient in increasing ubiquinone levels. We have evaluated the bioenergetics effect of ubiquinone treatment, demonstrating that intracellular CoQ(10) content after Qter supplementation positively correlates with an improved mitochondrial functionality (increased oxygen consumption rate, transmembrane potential, ATP synthesis) and resistance to oxidative stress.
Conclusions: The improved cellular energy metabolism related to increased CoQ(10) content represents a strong rationale for the clinical use of coenzyme Q(10) and highlights the biological effects of Qter®, that make it the eligible CoQ(10) formulation for the ubiquinone supplementation.
Díaz-Castro J, Guisado R, Kajarabille N, et al.
European Journal of Nutrition. 2012;51(7):791-9. doi:10.1007/s00394-011-0257-5.
Background: Exhausting exercise induces muscle damage associated with high production of free radicals and pro-inflammatory mediators.
Aim: The objective of this study was to determine for the first time and simultaneously whether oral coenzyme Q(10) (CoQ(10)) supplementation can prevent over-expression of inflammatory mediators and oxidative stress associated with strenuous exercise.
Methods: The participants were classified in two groups: CoQ(10) group (CG) and placebo group (PG). The physical test consisted in a constant run (50 km) that combined several degrees of high effort (mountain run and ultra-endurance), in permanent climbing.
Results: Exercise was associated with an increase in TNF-α, IL-6, 8-hydroxy-2'-deoxyguanosine (8-OHdG), and isoprostane levels, revealing the degree of inflammation and oxidative stress induced. Oral supplementation of CoQ(10) during exercise was efficient reducing oxidative stress (decreased membrane hydroperoxides, 8-OHdG and isoprostanes generation, increased catalase, and total antioxidant status), which would lead to the maintenance of the cell integrity. Data obtained also indicate that CoQ(10) prevents over-expression of TNF-α after exercise, together with an increase in sTNF-RII that limits the pro-inflammatory actions of TNF. Moreover, CoQ(10) supplementation reduced creatinine production.
Conclusions: CoQ(10) supplementation before strenuous exercise decreases the oxidative stress and modulates the inflammatory signaling, reducing the subsequent muscle damage.
Sarmiento A, Diaz-Castro J, Pulido-Moran M, et al.
BioFactors (Oxford, England). 2016;42(6):612-622. doi:10.1002/biof.1297.
Studies about Coenzyme Q (CoQ ) supplementation on strenuous exercise are scarce, especially those related with oxidative stress associated with physical activity and virtually nonexistent with the reduced form, Ubiquinol. The objective of this study was to determine, for the first time, whether a short-term supplementation with Ubiquinol can prevent oxidative stress associated to strenuous exercise. The participants (n = 100 healthy and well trained, but not on an elite level) were classified in two groups: Ubiquinol (experimental group), and placebo group (control). The protocol consisted of conducting two identical strenuous exercise tests with a rest period between tests of 24 h. Blood and urine samples were collected from the participants before supplementation (basal value) (T1), after supplementation (2 weeks) (T2), after first physical exercise test (T3), after 24 h of rest (T4), and after second physical exercise test (T5).The increase observed in the lactate, isoprostanes, DNA damage, and hydroperoxide levels reveals the severity of the oxidative damage induced by the exercise. There was a reduction in the isoprostanes, 8-OHdG, oxidized LDL, and hydroperoxydes in the supplemented Ubiquinol group, an increase in total antioxidant status, fat soluble antioxidant (both plasma and membrane), and CAT activity. Also, NO in the Ubiquinol-supplemented group was maintained within a narrow range. Oxidative stress induced by strenuous exercise is accumulative and increases transiently in subsequent sessions of physical activity. A short-term supplementation (2 weeks) with Ubiquinol (200 mg/day) before strenuous exercise, decreases oxidative stress and increases plasma NO, fact that could improve endothelial function, energetic substrate supply, and muscle recovery after strenuous exercise. © 2016 BioFactors, 42(6):612-622, 2016.
Pala R, Orhan C, Tuzcu M, et al.
Journal of Sports Science & Medicine. 2016;15(1):196-203.
This study reports the effects of Q10, coenzyme Q10 or ubiquinone, a component of the electron transport chain in mitochondria, on nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB), inhibitors of kappa B (IκB), nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and hemeoxygenase 1 (HO-1) in rats after chronic exercise training for 6 weeks. 8-week old male Wistar rats were assigned randomly to one of four treatments planned in a 2 x 2 factorial arrangement of two condition (sedentary vs. exercise training), and two coenzyme Q10 levels (0 and 300 mg/kg per day for 6 weeks). The expression levels of the target proteins were determined in the heart, liver and muscle, and biochemical parameters including creatinine, urea, glucose and lipid profile were investigated in plasma. When compared with sedentary group, significant decreases in heart, liver and muscle NFκB levels by 45%, 26% and 44% were observed in Q10 supplemented rats after exercise training, respectively, while the inhibitory protein IκB increased by 179%, 111% and 127% in heart, liver and muscle tissues. Q10 supplementation caused an increase in Nrf2 (167%, 165% and 90%) and HO-1 (107%, 156% and 114%) after exercise training in heart, liver and muscle tissues (p < 0.05). No significant change was observed in any of the parameters associated with protein, carbohydrate and lipid metabolism, except that exercise caused a decrease in plasma triglyceride, which was further decreased by Q10. In conclusion, these results suggest that Q10 modulates the expression of NFκB, IκB, Nrf2 and HO-1 in exercise training, indicating an anti-inflammatory effect of Q10 and emphasizes its role in antioxidant defense. Key pointsCoenzyme Q10 is a component of the electron transport chain in mitochondria which is linked to the generation of energy in the cell.Coenzyme Q10 may inhibit the peroxidation of lipids, thus acting as an antioxidant and protects tissue against oxidative injury.Using of coenzyme Q10 can significantly elevate IκB, Nrf2 and HO-1 and reduce NFκB during exercise training.
Muraki A, Miyashita K, Mitsuishi M, et al.
Journal of Applied Physiology (Bethesda, Md. : 1985). 2012;113(3):479-86. doi:10.1152/japplphysiol.01362.2011.
Statins are cholesterol-lowering drugs widely used in the prevention of cardiovascular diseases; however, they are associated with various types of myopathies. Statins inhibit 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase and thus decrease biosynthesis of low-density lipoprotein cholesterol and may also reduce ubiquinones, essential coenzymes of a mitochondrial electron transport chain, which contain isoprenoid residues, synthesized through an HMG-CoA reductase-dependent pathway. Therefore, we hypothesized that statin treatment might influence physical performance through muscular mitochondrial dysfunction due to ubiquinone deficiency. The effect of two statins, atorvastatin and pravastatin, on ubiquinone content, mitochondrial function, and physical performance was examined by using statin-treated mice. Changes in energy metabolism in association with statin treatment were studied by using cultured myocytes. We found that atorvastatin-treated mice developed muscular mitochondrial dysfunction due to ubiquinone deficiency and a decrease in exercise endurance without affecting muscle mass and strength. Meanwhile, pravastatin at ten times higher dose of atorvastatin had no such effects. In cultured myocytes, atorvastatin-related decrease in mitochondrial activity led to a decrease in oxygen utilization and an increase in lactate production. Conversely, coenzyme Q(10) treatment in atorvastatin-treated mice reversed atorvastatin-related mitochondrial dysfunction and a decrease in oxygen utilization, and thus improved exercise endurance. Atorvastatin decreased exercise endurance in mice through mitochondrial dysfunction due to ubiquinone deficiency. Ubiquinone supplementation with coenzyme Q(10) could reverse atorvastatin-related mitochondrial dysfunction and decrease in exercise tolerance.